

## PREFEITURA DE SANTOS Secretaria de Educação



#### ROTEIRO DE ESTUDOS

UME: MONTE CABRÃO

ANO:8° ANO COMPONENTE CURRICULAR: MATEMÁTICA

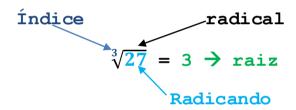
PROF.: ROBERTO VIEIRA CORRÊA

PERÍODO DE 01/03/2021 a 12/03/2021

# POTÊNCIAÇÃO E RADICIAÇÃO

HABILIDADES: (EF08MA02) Resolver e elaborar problemas usando a relação entre potenciação e radiciação, para representar uma raiz como potência de expoente fracionário.

## Elementos da radiciação:



Radiciação é a operação inversa da potenciação.

#### Observe:

a) 
$$4^2 = 4 \times 4 = 16$$

Na **potência** 4º você observa o expoente para obter o resultado, multiplicando a base conforme o expoente.

Na **radiciação**  $\sqrt[2]{16}$  você observa o índice para obter o resultado, neste caso qual o número que multiplicado por ele mesmo pois o índice é 2 e o resultado será igual a 16. Encontramos o 4, pois 4 x 4 = 16. Logo a raiz é **4**.

**b)** 
$$3^3 = 3 \times 3 \times 3 = 27 \longrightarrow \sqrt[3]{27} = 3 \longrightarrow 3 \times 3 \times = 27$$

Neste exemplo o expoente é 3, onde a base 3 multiplica por ela mesma 3 vezes.

Na radiciação  $\sqrt[3]{27}$  o índice também é 3, logo você precisa de um número que multiplicado por ele mesmo 3 vezes o resultado será igual á 27. Encontramos o 3, pois 3 x 3 x 3 = 27. Logo a raiz é 3.

### Exercício:

Determine o valor das raízes a seguir:

Modelo:  $\sqrt[2]{81}$ =9 (Pois, 9 x 9 = 81)  $\rightarrow$  não precisa escrever é só para entender o modelo.

a) 
$$\sqrt[3]{8} =$$

b)  $\sqrt[4]{16} =$ 

c)  $\sqrt[2]{9} =$ 

d)  $\sqrt[3]{125} =$ 

e)  $\sqrt[2]{49}$  =

f) 
$$\sqrt[3]{64} =$$

g)  $\sqrt[2]{121} =$ 

h)  $\sqrt[2]{64} =$ 

 $i)\sqrt[3]{1000} =$ 

 $\frac{1}{3} \cdot \sqrt[2]{36} =$ 

Toda raiz com índice 2 é chamada de raiz quadrada, e podemos representar a mesma sem o índice no radical  $\sqrt{4}$ .

Toda raiz com índice 3 é chamada de raiz cúbica  $\sqrt[3]{8}$ .

## RAIZES NÃO EXATAS:

Nem toda raiz é exata, mas é possível estimar uma raiz quadrada.

## Exemplos:

a)  $\sqrt{6}$ 

Sabe-se que 6 está entre os quadrados perfeitos 4 e 9, isto é, 4 < 6 < 9 (4 é menor que 6 que é menor que 9).

 $\sqrt{4}$  =2 e  $\sqrt{9}$  =3, a raiz de  $\sqrt{6}$  está entre **2** e **3**, isto é,  $\sqrt{4} < \sqrt{6} < \sqrt{9}$ .

Como o valor que queremos está entre 2 e 3, podemos fazer por aproximação:

$$(2,1)^2 = (2,1) \times (2,1) = 4,41$$
  $(2,2)^2 = (2,2) \times (2,2) = 4,84$ 

$$(2,2)^2 = (2,2) \times (2,2) = 4,84$$

$$(2,3)^2 = (2,3) \times (2,3) = 5,29$$
  $(2,4)^2 = (2,4) \times (2,4) = 5,76$ 

$$(2,4)^2 = (2,4) \times (2,4) = 5,76$$

$$(2,5)^2 = (2,5) \times (2,5) = 6,25$$

O valor encontrado mais próximo para a raiz de 6 é  $\frac{2,4}{2}$ . Pois  $(2,5)^2$  ultrapassa o 6.

b) Logo, a 
$$\sqrt{6} \cong 2,4$$
  $\sqrt{6}$  é aproximadamente 2,4.

#### Exercícios:

- 1. Calcule o valor aproximado das raízes:
- a)  $\sqrt{7} \cong$
- b)  $\sqrt{8} \cong$
- c)  $\sqrt{12} \cong$
- d)  $\sqrt{13} \cong$
- e) $\sqrt{3}$  $\cong$
- f)  $\sqrt{15} \cong$
- g) $\sqrt{34}$  $\cong$
- h)  $\sqrt{26} \cong$
- i)  $\sqrt{10} \cong$
- $\dot{j}$ )  $\sqrt{26} \cong$
- 2. Carlos ligou ao zelador do seu prédio para saber as medidas do quarto principal, a fim de comprar piso para reforma. O zelador informou que, na última reforma, compraram 17m² de piso e havia sobrado 1m². Ficou sabendo também que a medida da largura e do comprimento do quarto eram iguais. Com essas informações, será possível Carlos encontrar as medidas do quarto principal? Quais foram as medidas encontradas por Carlos? Faça a representação geométrica do quarto principal.