

PREFEITURA DE SANTOS

Secretaria de Educação

UME: JUDOCA RICARDO SAMPAIO CARDOSO

ANO: 8° ANOS COMPONENTE CURRICULAR: CIÊNCIAS

PROFESSOR: MARIA EDUARDA PIMENTEL MADEIRA

HABILIDADES: EF08Cl03; EF08Cl06B Período de 17/05/2021 a 28/05/2021

2º ROTEIRO DE ESTUDOS/ATIVIDADES - 2º TRIMESTRE

Olá, turma!

Nessa quinzena usaremos o livro "Currículo em Ação" - volume 1

As atividades podem ser feitas no próprio livro ou respondidas no caderno.

Continuaremos com a mesma organização: Primeiro vocês estudam, tiram as dúvidas, fazem as tarefas no livro ou caderno e só depois, respondem ao formulário.

Beijos

PÁGINA 165:

1. Leia o texto introdutório e registre em seu caderno a questão a "reflexão individual".

PÁGINA 166:

- 1. Assista ao vídeo: https://www.youtube.com/watch?v=6r0EgxExbEU&t=62s
- 2. Faça um breve resumo em seu caderno sobre o vídeo assistido.
- **3.** Ainda em seu caderno, comente sobre a relação de dependência que temos nos dias atuais dos equipamentos eletroeletrônicos.

PÁGINA 167:

1. No exercício "c"você deve listar 5 máquinas/equipamentos/aparelhos e completar as outras colunas da tabela com a finalidade e o tipo de energia que utiliza: química, elétrica, solar, eólica, cinética, térmica, etc. Como não há espaço suficiente no livro, você deve fazer a tabela em seu caderno.

PÁGINAS 167/168/169:

1. Leia a "Atividade 2: as diferentes modalidades (formas ou tipos) de energia" e pesquise <u>um</u> dos termos listados (energia mecânica; térmica; elétrica; química; ou nuclear) e complete a ficha da página 169.

PREFEITURA DE SANTOS

Secretaria de Educação

ROTEIRO DE ESTUDOS/ATIVIDADES

UME: JUDOCA RICARDO SAMPAIO CARDOSO

ANO: 8º Anos COMPONENTE CURRICULAR: MATEMÁTICA

PROFESSOR: MARIA JOSÉ A. S. GOMES

Período de 17/05/2021 A 26/05/2021

Habilidades: (EF08MA01) Efetuar cálculos com potências de expoentes inteiros e aplicar esse

conhecimento na representação de números em notação científica.

(EF08MA02) Resolver e elaborar problemas usando a relação entre potenciação e radiciação, para representar uma raiz como potência de expoente fracionário.

Olá aluno! Você está recebendo o roteiro para duas semanas de aulas, serão atividades organizadas e distribuídas em 12 aulas. Caso você acompanhe nossas aulas pelo Classroom ou Whatsapp, receberá as orientações a cada dia de aula. Mas se você está recebendo o roteiro impresso, não deixe de se organizar. As atividades serão orientadas abaixo pelo número da aula e você pode utilizar a tabela abaixo para marcar cada aula ou atividade feita. Use as datas da tabela para te ajudar na organização. Não deixe de estudar, ok?

MATERIAL DO LIVRO "CURRÍCULO EM AÇÃO"

Situação de Aprendizagem 1 - Atividades 1, 2, 3 e 4 - Páginas 132 a 136

AULAS	
1 e 2	Atividade 1- Resolver as atividades 1.1 a 1.5 Utilizar as explicações de apoio e vídeo aula proposto sobre números quadrados perfeitos para a compreensão da transposição potência = tabela
3 e 4	Continuar a resolução das atividades 1.6 a 1.7, além das orientações do professor você pode assistir ao vídeo aula sobre propriedades da potenciação.
5 e 6	Resolver as atividades 1.8 e 1.9 seguindo as orientações do professor.
7 e 8	Atividade 3 - Resolver os exercícios 3.1 a 3.3, usar a explicação e o vídeo aula sobre raízes exata e não exata.
9 e 10	Atividade 4 - Resolver as atividades 4.1 a 4.3, utilize explicação da atividade 4.2 e as orientações do professor, realize as atividades 4.4 e 4.5 e comente suas conclusões.

	Realizar a atividade 2 utilizando a explicação sobre potência de valores "astronômicos" do livro currículo em ação e as orientações do professor sobre notação científica.	
	notação científica.	

AULAS 1 e 2:

Você sabe que os quadrados são polígonos com lados da mesma medida. Na malha quadriculada da atividade 1.1 (página 132) do Livro "CURRÍCULO EM AÇÃO", você encontra dois quadrados pintados: um deles tem dois quadrados de lado e o outro tem 3 quadrados de lado. Conte quantos quadradinhos cada um deles tem no total e responda no próprio livro.

Depois de contar os quadradinhos dos exemplos, faça outros quadrados diferentes, pinte os quadradinhos e diga o total de quadradinhos de cada um, respondendo no livro.

Faça uma foto da malha quadriculada e poste no classroom (ou WhatsApp).

Para os alunos que recebem o roteiro impresso: entregar o livro na escola, na data marcada.

Você desenhou muitos quadrados na malha quadriculada. Agora, nós vamos representar o total de quadradinhos de cada um dos quadrados que você fez, na forma de potenciação.

O quadrado azul do exemplo tem 4 quadradinhos no total e 2 quadradinhos de lado, então:

$$2.2 = 2^2 = 4$$

O quadrado rosa do exemplo tem 9 quadradinhos no total e 3 quadradinhos de lado, então:

$$3. 3 = 3^2 = 9$$

Esses números (4 e 9) chamam-se quadrados perfeitos.

Quadrado perfeito é qualquer número natural que pode ser representado pelo quadrado de um número também natural.

Resolva a atividade 1.2, escrevendo os 10 primeiros números quadrados perfeitos. Já temos 4 e 9, é só continuar...

Para os alunos que recebem o roteiro impresso: entregar o livro na escola, na data marcada.

Para conferir suas respostas e aprender um pouco mais sobre quadrados perfeitos, assista à videoaula abaixo com muita atenção. Caso não tenha entendido alguma coisa, esclareça as suas dúvidas pelo WhatsApp.

https://www.youtube.com/watch?v=UVFR57uFMQI - números quadrados perfeitos

Faça uma foto da malha quadriculada e encaminhe pelo WhatsApp.

AULAS 3 e 4 - ATIVIDADES 1.6 A 1.7 - PÁG. 133 - DO LIVRO "CURRÍCULO EM AÇÃO"

RELEMBRANDO A POTENCIAÇÃO E SUAS PROPRIEDADES

Consideremos uma multiplicação em que todos os fatores são iguais

Exemplo:

5x5x5, indicada por 53

ou seja, $5^3 = 5x5x5 = 125$

onde:

5 é a base (fator que se repete)

3 é o expoente (o número de vezes que repetimos a base)

125 é a potência (resultado da operação)

Outros exemplos:

- a) $7^2 = 7x7 = 49$
- b) $4^3 = 4x4x4 = 64$
- c) 5^4 = 5x5x5x5=625
- d) $2^5 = 2x2x2x2x2=32$

O expoente 2 é chamado de quadrado

- O expoente 3 é chamado de cubo
- O expoente 4 é chamado de quarta potência.
- O expoente 5 é chamado de quinta potência.

Faça uma foto da resolução das atividades e poste no classroom (ou WhatsApp).

PROPRIEDADES DA POTENCIAÇÃO

1ª Propriedade: Quando multiplicamos potências de mesma base, podemos conservar a base e somar os expoentes.

$$(a^m)^n = a^{m \cdot n}$$

Exemplos:

- \bullet 2⁵ . 2³ = 2⁵⁺³ = 2⁸
- \bullet 3² . 3 . 3² = 3²⁺¹⁺² = 3⁵
- \bullet 5³ . 5⁻⁵ = 5³⁻⁵ = 5⁻²

2ª Propriedade: Quando dividimos potências de mesma base, podemos conservar a base e subtrair os expoentes

$$a^m\colon a^n\,=\,a^{m\,-\,n}$$

Exemplos:

$$\bullet \ 2^5 : 2^3 = 2^{5-3} = 2^2$$

•
$$x^4$$
 : $x^{-2} = x^{4-(-2)} = x^6$

3ª Propriedade: Potência de uma potência

Para elevar uma potência a um expoente, conservamos a base e multiplicamos os expoentes.

$$(a^m)^n = a^{m \cdot n}$$

Exemplos:

$$(2^3)^4 = 2^{3.2} = 2^{12}$$

•
$$(4^2)^{-3} = 4^{2.(-3)} = 4^{-8}$$

4ªPropriedade: Potência de um produto ou de um quociente

$$(a . b)^m = a^m. b^m$$

 $(a : b)^m = a^m : b^m (b \neq 0)$

Exemplos:

•
$$(2.5)^2 = 2^2.5^2$$

•
$$(2:5)^2 = 2^2:5^2$$

•
$$(2^2 . 5^3)^2 = (2^2)^2 . (5^3)^2 = 2^4 . 5^6$$

•
$$(x^3:2^4)^3 = (x^3)^3:(2^4)^3 = x^9:2^{12}$$

Potências com expoente negativo

Quando uma potência possui expoente negativo, a propriedade usada para calculá-la é a seguinte:

$$x^{-n} = \left(\frac{1}{x}\right)^n = \frac{1}{x^n}$$

Essa propriedade geralmente é lida da seguinte maneira: quando uma potência possui expoente negativo, inverta sua base e também o sinal do expoente. Assim, para resolver potências cujo expoente é negativo, proceda da seguinte maneira:

*Escreva a base da potência na forma de fração;

Veia o exemplo:

$$4^{-3} = \left(\frac{4}{1}\right)^{-3} = \left(\frac{1}{4}\right)^3 = \frac{1^3}{4^3} = \frac{1}{64}$$

Para conferir suas respostas e aprender um pouco mais sobre propriedades da potenciação, assista à videoaula abaixo com muita atenção. Caso não tenha entendido alguma coisa, esclareça as suas dúvidas pelo WhatsApp.

https://www.youtube.com/watch?v=8B0BO9khA3A - propriedades da potenciação

Faça uma foto da resolução das atividades e poste no classroom (ou WhatsApp).

AULAS 5 E 6 - PÁG. 133 A 134 DO LIVRO "CURRÍCULO EM AÇÃO".

Faça uma foto da resolução das atividades e poste no classroom (ou WhatsApp).

AULAS 7 E 8 - PÁG. 134 A 135 DO LIVRO "CURRÍCULO EM AÇÃO", Leia atentamente a matéria do livro "Estimando Raiz Quadrada".

RELEMBRANDO: RAIZ QUADRADA

Raiz Quadrada é a operação inversa de uma potência de expoente 2.

Para calcular a raiz quadrada, basta multiplicar fatores iguais, ou seja, usar a potenciação Por exemplo, para determinar a raiz quadrada de 16:

$$16 = 4$$
, pois $42 = 4 \cdot 4 = 16$

Para calcular raízes quadradas, podemos utilizar também a decomposição em fatores primos, e se todos fatores tiverem expoente par , o número será um quadrado perfeito, caso algum fator tenha expoente ímpar, o número não é quadrado perfeito.

Ex.1) Verificar a raiz quadrada de 36. 2) Verificar a raiz quadrada de 8. 36 2 2 2 2 18 4 3 9 2 3 3 Fatores 22 . 21 1 Fatores 22 . 32

Os fatores tem expoentes pares, então 36 é quadrado perfeito. Tem um fator com expoente ímpar, então 8 não é quadrado perfeito.

^{*}Inverta a base e também o sinal do expoente.

Raízes não exatas

Quando vamos trabalhar com raízes não exatas, como , , , em alguns momentos torna-se difícil fazer isto, para isso usamos a estimativa.

Para estimar a raiz quadrada não exata, podemos fazer:

$$(4,1)^2 = 16,81$$
 $(4,2)^2 = 17,64$ $(4,3)^2 = 18,49$ $(4,4)^2 = 19,36$ $(4,5)^2 = 20,25$

Então, podemos concluir que a é um valor aproximado entre 4,4 e 4,5.

Para conferir suas respostas e aprender um pouco mais sobre raízes quadradas exatas e não exatas, assista à videoaula abaixo com muita atenção. Caso não tenha entendido alguma coisa, esclareça as suas dúvidas pelo WhatsApp.

https://www.youtube.com/watch?v=mhZzdB2-ijo - raiz quadrada exata e não exata

Faça uma foto da resolução das atividades e poste no classroom (ou WhatsApp).

AULAS 9 E 10 - Págs. 135 e 136 DO LIVRO "CURRÍCULO EM AÇÃO".

- A) Leia com atenção a atividade 4.1 e faça a representação geométrica do quarto principal em seu caderno. Envie a foto da sua representação pelo Whatsapp ou anexe no Google Sala de Aula.
- B) Leia com atenção as informações retiradas do livro "Trilhas de Matemática", de Fausto Arnaud Sampaio.

Estudamos potências com expoentes inteiros e vamos ver agora que também é possível atribuir significado para potências com expoentes na forma de fração.

POTÊNCIAS COM EXPOENTE NA FORMA DE FRAÇÃO

Nesta Unidade estudamos potências com expoentes inteiros e vamos ver agora que também é possível atribuir significado para potências com expoentes na forma de fração.

Aplicando as propriedades da potenciação podemos obter, por exemplo, o valor da potência de base 4

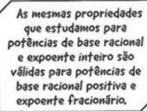
e expoente igual a
$$\frac{1}{2}$$
.

$$4^{\frac{1}{2}} = (2^2)^{\frac{1}{2}} = 2^{2 \cdot \frac{1}{2}} = 2^{\frac{2}{2}} = 2^1 = 2$$

Como $4^{\frac{1}{2}} = 2$ e $\sqrt{4} = 2$, podemos escrever: $4^{\frac{1}{2}} = 2 = \sqrt{4}$

Logo, $4^{\frac{1}{2}} = \sqrt[2]{4^1}$.

Veja outros exemplos.


Exemplo 1

$$8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}} = 2^{\frac{6}{3}} = 2^2 = 4$$

Como $8^{\frac{2}{3}} = 4$ e $\sqrt[3]{64} = 4$, podemos escrever: $8^{\frac{2}{3}} = \sqrt[3]{64}$
Logo, $8^{\frac{2}{3}} = \sqrt[3]{8^2}$, pois $8^2 = 64$.

Exemplo 2

$$9^{\frac{3}{2}} = (3^2)^{\frac{3}{2}} = 3^{2 \cdot \frac{3}{2}} = 3^{\frac{6}{2}} = 3^3 = 27$$

Como $9^{\frac{3}{2}} = 27$ e $\sqrt{729} = 27$, podemos escrever: $9^{\frac{3}{2}} = 27 = \sqrt{729}$
Logo, $9^{\frac{3}{2}} = \sqrt[3]{9^3}$, pois $9^3 = 729$.

De forma geral, dado um número racional positivo a e um número inteiro m, temos:

Se possível, assista aos vídeos disponíveis nos links:

https://www.youtube.com/watch?v=-

2Pis9JQUkQ&list=RDCMUCvMdTwY9FYB3cskV9f9djoQ&start_radio=1&t=1

https://www.youtube.com/watch?v=1j_FNxf3Zsg

AULAS 11 E 12 - PÁG. 134 DO LIVRO "CURRÍCULO EM AÇÃO"

De acordo com os conhecimentos adquiridos nas aulas anteriores, faça a atividade 2- do livro "Currículo em Ação". Registre as resoluções em seu caderno e anexe a foto no Google Sala de Aula ou envie-a pelo Whatsapp.

Notação Científica

A notação científica é uma forma de escrever números usando a potência de 10. É utilizada para reduzir a escrita de números que apresentam muitos algarismos. Números muito pequenos ou muito grandes são frequentemente encontrados nas ciências em geral e escrever em notação científica facilita fazer comparações e cálculos.

Um número em notação científica apresenta o seguinte formato: Exemplos:

a) 6 590 000 000 000 000 = 6,59 . 10 15

b) $0,000000000016 = 1,6.10^{-1}$

Transformar um número em notação científica

Veja abaixo como transformar os números em notação científica de forma prática abaixo: Exemplo:

- Primeiro "andar" com a vírgula para a direita, colocando-a entre o 9 e o 1, pois desta forma ficaremos apenas com o algarismo 9 (que é o primeiro algarismo diferente de 0) antes da vírgula;
- · Para colocar a vírgula nesta posição "andamos" 28 casas decimais. É necessário lembrar que ao colocar a vírgula depois do 9, o número ficou com um valor maior, então para não modificar seu valor o expoente ficará negativo;
- · Escrevendo a massa do elétron em notação científica: 9,11. 10 ™ g

Para os alunos que recebem o roteiro impresso: entregar a folha com as resoluções na escola, na data marcada. Lembre-se de identificá-la com nome e turma.

Para garantir a sua presença e participação nesse roteiro, acesse o link e responda o formulário:

https://forms.gle/RVFe2QEaSeuSXqQQ9