

Laudo Rampa Viaduto CODESP – SANTOS SP

Projeto nº: I-384

Dezembro/2017

Cliente: MRS Logística S.A.

SUMÁRIO

LISTA	DE FIGURAS	3
LISTA	DE TABELAS	
1 AI	PRESENTAÇÃO	<u></u>
2 IN	NFORMAÇÕES GERAIS	
2.1	Identificação do Objeto de Estudo	
2.2	Autor	
2.3	Equipe Técnica	
2.4	Empreendedor ou Cliente	
3 IN	NTRODUÇÃO	
4 PE	ESQUISAS DE CAMPO	1
4.1	Contagem Classificada de Veículos (CCV)	1
4.2	Velocidade Pontual	1
5 AI	NÁLISES TÉCNICAS	1
5.1	Rampas em Obras de Arte Especiais (OAE)	1
5.2	Segurança Viária	1
5.3	Análise de Inclinações de OAE existentes na região	1
5.4	Classe de Projeto e Funcional da Via	2
5.5	Análise Geral	2
6 CC	ONCLUSÃO	2
7 BI	IBLIOGRAFIA	2
EOI II D	DE TÉCNICA	2

LISTA DE FIGURAS

Figura 1: Localização da PN	7
Figura 2: Localização PN com sentidos de circulação	8
Figura 3: Perfil longitudinal do viaduto	8
Figura 4: Equipamento Way Count	10
Figura 5: Configuração de Instalação do Way Count	11
Figura 6: Comportamento do tráfego no ponto de análise	12
Figura 7: Resumo VMD	13
Figura 8: Ponto de medição de velocidade	15
Figura 9 – radar portátil de mão utilizado	15
Figura 10: Comprimentos e inclinações de rampas	17
Figura 11: Distância de visibilidade em curvas verticais convexas	18
Figura 12: Ponto de medição de inclinação	20

LISTA DE TABELAS

Tabela 1: Resumo VMD	12
Tabela 2: VMD Sentido Porto por tipo de veículo	13
Tabela 3: VMD Sentido BR-101 por tipo de veículo	14
Tabala A. Banana ménina a ana alima nana nama / Critéria angal)	1.0
Tabela 4: Rampas máximas em aclive para ramos (Critério geral)	16
Tabela 5: Rampas máximas (%) - Rodovias rurais	19
	0
Tabela 6: Rampas máximas para vias urbanas (%)	21
Tabela 7: Resumo das metodologias apresentadas	21

1 APRESENTAÇÃO

A **ImTraff Consultoria e Projetos de Engenharia Ltda.** tem o prazer de apresentar o Laudo Técnico em relação a Rampa do Futuro Viaduto CODESP — SANTOS SP.

O Estudo Técnico apresentado se faz necessário para subsidiar, do ponto de vista das normativas técnicas, a possibilidade das rampas do viaduto de transposição da linha férrea terem inclinação superior a 6% sem afetar a segurança e conforto do tráfego local.

2 INFORMAÇÕES GERAIS

2.1 IDENTIFICAÇÃO DO OBJETO DE ESTUDO

- Objeto: Viaduto de Transposição de Linha Férrea
- Localização: Estrada Particular da Codesp Ilha Barnabé Santos SP. (23°54'59.5"S 46°19'13.6"W ou
 -23.916514, -46.320438)

2.2 AUTOR

Empresa de Consultoria: ImTraff – Consultoria e Projetos de Engenharia Ltda.

Endereço: Av. Cristiano Machado, 640/sl. 1106 - Bairro da Graça

Belo Horizonte - MG / CEP: 31.030-514 - Telefone: 31 2516 8001

e-mail: frederico@imtraff.com.br /

Site: www.imtraff.com.br/

2.3 EQUIPE TÉCNICA

- RT: Frederico Rodrigues Engº Civil, D.Sc. (Engenharia de Transportes), CREA 90.217/D MG;
- Pedro Oliveira Técnico em Transportes e Trânsito.
- Igor Artur Técnico em Transporte Trânsito

2.4 EMPREENDEDOR OU CLIENTE

- Nome da Empresa: MRS Logística S.A.
- Endereço: Praia de Botafogo, 288 Grupo 1201-E-Rio de Janeiro CEP: 21050-000

3 INTRODUÇÃO

A MRS Logística S.A irá eliminar a Passagem de Nível (PN) existente na Estrada Particular da CODESP localizada na Ilha Barnabé, Santos – SP, com a criação de uma transposição em desnível. As figuras seguintes apresentam a localização da referida PN.

Figura 1: Localização da PN

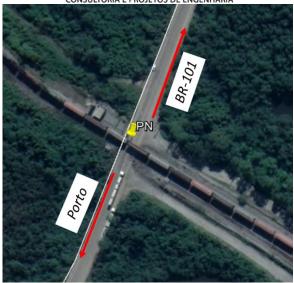


Figura 2: Localização PN com sentidos de circulação

O viaduto, de forma simplificada, será composto por uma curva convexa simétrica como mostra a figura a seguir.

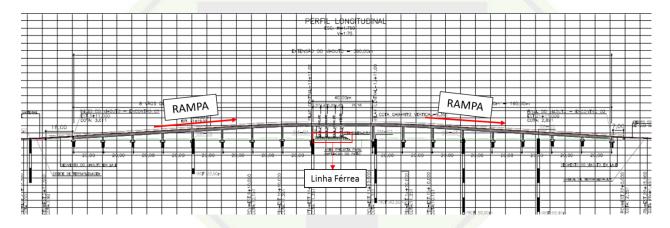


Figura 3: Perfil longitudinal do viaduto

O presente estudo tem por objetivo apresentar tecnicamente as normativas que permitem inclinações superiores a 6% em junções de rampas de Obras de Arte Especiais (OAE).

Como base de bibliografia técnica deste estudo, compõe os seguintes referenciais teóricos:

- Manual de Projeto Geométrico de Rodovias Rurais DNER 1.999;
- Manual de Projeto de Interseções IPR-718 DNIT 2.006;
- O Manual de Medidas de Segurança Viária (Edição ampliada e revisada) 2.015 Rune Elvik, Alena
 Høye, Truls Vaa, Michael Sørensen;

• Projeto Geométrico de Rodovias (2ª Edição) 2.004 – Carlos R. T. Pimenta e Márcio P. Oliveira.

Para desenvolvimento do estudo, além de investigações técnicas bibliográficas, foram realizadas pesquisas de campo que incluíram:

- Contagem Classificada de Veículos (CCV);
- Velocidade Pontual;
- Medidas de inclinações de viadutos próximos.

4 PESQUISAS DE CAMPO

4.1 CONTAGEM CLASSIFICADA DE VEÍCULOS (CCV)

A Contagem Classificada de Veículos (CCV) foi realizada em um período de 24 horas no dia típico de 22 de Novembro utilizando o equipamento de contagem pneumática Way Count como pode ser visto na figura seguinte.

Figura 4: Equipamento Way Count

No modo como foi instalado (Figura 5) este equipamento é capaz de distinguir o sentido de tráfego. Para classificação dos veículos por padrão de eixo, foi realizada, de modo complementar, pesquisa CCV manual.

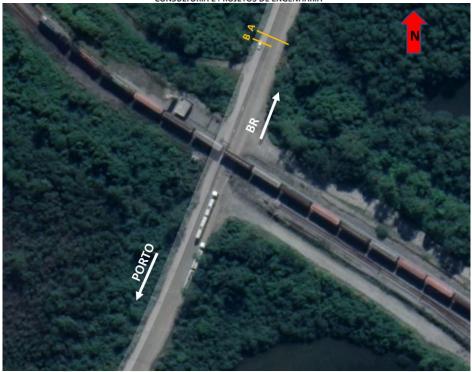


Figura 5: Configuração de Instalação do Way Count

O comportamento do tráfego ao longo das 24 horas é apresentado na Figura 6 em que, no período da manhã, existe um movimento maior sentido Porto e no pico tarde sentido BR-101.

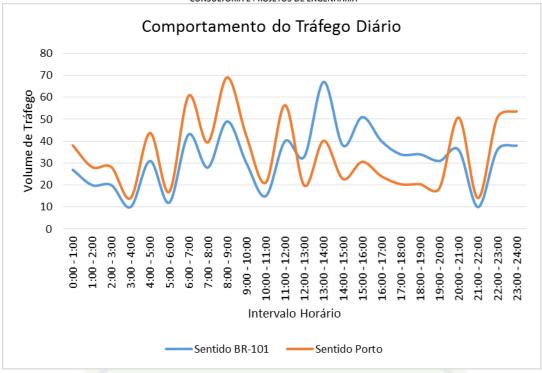


Figura 6: Comportamento do tráfego no ponto de análise

A tabela seguinte resume o VMD por sentido na seção da via e para melhor entendimento do comportamento do tráfego tem-se o gráfico da Figura 7.

Nota-se uma predominância de veículos pesados (ônibus e caminhões) na ordem de 60% a 75% do tráfego total.

Tabela 1: Resumo VMD

Sentido	Leves	Pesado	% Pesado	Total
Porto	208	616	74,76%	824
BR-101	292	481	62,23%	773

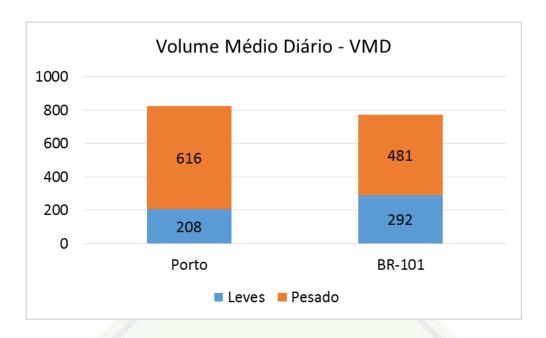


Figura 7: Resumo VMD

Os perfis de configurações dos tipos de veículos estão apresentados nas tabelas seguintes. Entre os veículos pesados, nota-se uma maior quantidade entre as carretas de 6, 7 e 9 eixos em ambos os sentidos.

VMD - Sentido Porto por Tipo de Veículo 6 F33 6H02-C00 0 00 166 0 •0 Auto Reb 1 Auto / Auto Reb 2 2CB **3CB** 4CB Moto **2C** Utilitário Eixo **Eixos** 27 181 18 0 --- 00 □ 0 -= 000 -0 oo --- o 3C 4CD 251 **2S2 2S3** 351 **3S2 3S3** 18 0 0 36 0 0 72 0 - - - · · · -0 co --- o co -00 0 0 **6** 0 -- 0 0 - 00 00 00 312 **2J3 3J3** 3C2 3D4 212 213 313 0 0 0 163 0 5 0 0 **● 00 =0 000 0 0** 6 00 00 <u>00</u> 6 00 00 00 00 9 00 000 000 9 00 00 000 9 00 000 00 00 00 0 -00 0 0 0 3D6 3T4 3T6 3M6 3P5 3V5 3R6 3Q4 149 0 18 136 0

Tabela 2: VMD Sentido Porto por tipo de veículo

Tabela 3: VMD Sentido BR-101 por tipo de veículo

VMD - Sentido BR-101 por Tipo de Veículo								
		6H32-1760		• • •	0 00	•• ••		
Auto / Utilitário	Auto Reb 1 Eixo	Auto Reb 2 Eixos	Moto	2CB	ЗСВ	4CB	2C	
211	0	0	80	11	0	0	18	
			Q	6 0	6 60 0	- 00 - 00	00 - 000	
3C	4CD	2S1	2S2	2S3	3S1	3S2	3S3	
22	0	0	0	0	0	0	33	
	6 000	- O O		6 6 0 00	-0 00 0 00	-00 0 0	□ □ □ □ □ □ □	
212	213	312	313	2J3	313	3C2	3D4	
0	0	0	146	0	11	0	0	
= 00 = 0 00 0 0	€ 00 00 00	9 400 00 00 00	6 00 000 000	00 00 000	00000	00 000 00	2 00 ∞ 00 00	
3D6	3T4	3T6	3M6	3P5	3Q4	3V5	3R6	
0	128	11	102	0	0	0	0	

4.2 VELOCIDADE PONTUAL

Para estabelecer o perfil do comportamento do tráfego, foram realizadas medições de velocidade em seção típica da via, no ponto apresentado na figura seguinte.

Figura 8: Ponto de medição de velocidade

As análises das medições em campo apontaram para uma velocidade média de 31,86 km/h dos veículos pesados e 37,38 km/h para veículos leves. Já a velocidade 85 percentil, ou seja, velocidade na qual 85% dos veículos trafegam é de 37,8 km/h para pesados e 40,95 km/h para veículos leves.

Nota-se, pelos dados, que a via opera com velocidade média baixa, características de vias locais ou coletoras. Considera-se como velocidade de projeto 40 km/h.

As medições foram realizadas com a utilização de um radar portátil Bushnell, conforme Figura a seguir:

Figura 9 – radar portátil de mão utilizado

5 ANÁLISES TÉCNICAS

Neste capítulo, são apresentadas as abordagens técnicas de manuais sobre as inclinações de rampas de obras de arte e segurança viária.

5.1 RAMPAS EM OBRAS DE ARTE ESPECIAIS (OAE)

De acordo com o Manual do DNIT de Projeto de Interseções (IPR, Publi., 718), no caso de **ramos de interconexões**, são admissíveis condições mais severas de projeto, em consequência da maior predisposição do motorista em aceitar, para a velocidade diretriz adotada, uma rampa mais acentuada combinada a um traçado menos fluente.

A escolha da rampa máxima estará condicionada, em cada caso, às velocidades de projeto fixadas para o ramo e à composição do tráfego. Valores mais elevados que os apresentados na Tabela 4 (valores de rampa em aclive) são admissíveis em curtas extensões, por exemplo, se contribuírem para a aceleração ou desaceleração dos veículos onde for conveniente, ou ainda, se o ramo tiver volumes muitos baixos e reduzida participação de veículos comerciais.

Nos ramos de mão única com greides em declive, deverão ser mantidos os mesmos limites, que poderão ser 2% maiores em casos especiais.

Tabela 4: Rampas máximas em aclive para ramos (Critério geral)

Velocidade de projeto km/h)	30 - 40	40 - 50	50 – 70	70 – 80
Rampa máxima	6% - 8%	5% - 7%	4% - 6%	3% - 5%

i) Em casos especiais, nos ramos de mão única em declive, os valores podem ser 2% maiores.

Fonte: Manual de projeto de interseções. 2.ed. - Rio de Janeiro, 2005. 528p. (IPR. Publ., 718)

Naturalmente, o greide ascendente não deverá ser íngreme ao ponto de causar grande queda na velocidade do veículo, reduzindo a capacidade, e causando congestionamento.

ii) Quando as condições topográficas exigirem, greides mais fortes que os recomendados podem se usados.

A desaceleração dos veículos num ramo em aclive não é tão prejudicial quanto numa via direta, desde que a velocidade não baixe a ponto de provocar um acúmulo de veículos na rodovia. Nas interconexões em diamante, por exemplo, a maioria dos ramos mede apenas 120 a 360 m de comprimento e o curto trecho, com o greide mais pronunciado, tem moderado efeito operacional.

Como base no gabarito de projeto de transposição da PN, esquematicamente, tem-se na figura a seguir as medidas de comprimento e inclinações correspondentes.

Perfil Esquemático Comprimentos e inclinações de Rampas

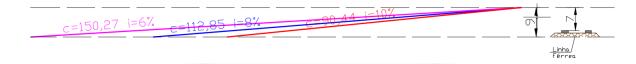


Figura 10: Comprimentos e inclinações de rampas

Como pode ser observado, para inclinações de 8% e 10% os comprimentos de rampa são menores do que os valores de moderado efeito operacional (entre 120 e 360) citados no manual do DNIT e, com isso, evidencia-se que para que rampas entre 8% e 10% o impacto na operação da rodovia é baixo.

Em geral, de acordo com o Manual do DNIT de Projeto de Interseções (IPR, Publi., 718), uma distância de visibilidade adequada é mais importante que um greide específico, devendo ser essa a diretriz na elaboração do projeto.

Para o projeto em questão, considerando uma velocidade de projeto de 40 km/h, de acordo com as diretrizes de projeto do DNIT apresentada na figura seguinte a distância de visibilidade é de 45m.

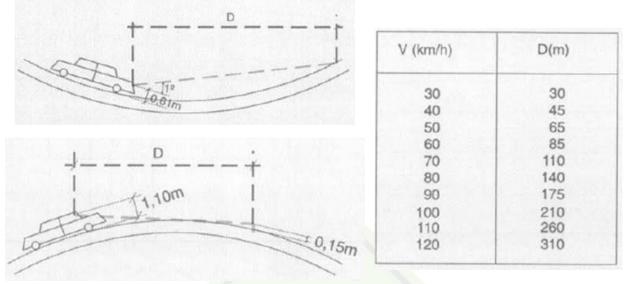


Figura 11: Distância de visibilidade em curvas verticais convexas

Fonte: Manual de projeto geométrico de rodovias rurais. – Rio de Janeiro, 1999. 195p. (IPR. Publi., 706)

O projeto de transposição do viaduto conseguirá atender as diretrizes de projeto do DNIT quanto as distâncias de visibilidade e com isso atenderá ao mais importante requisito de projeto.

Projetado de maneira apropriada, rampas com aclives curtos de 7% a 8% permitem uma operação segura, e não tornam a operação perigosa, por aceleração excessiva.

5.2 SEGURANÇA VIÁRIA

No que diz respeito a segurança viária, de acordo com o Manual do DNIT, Manual de Projeto e Práticas Operacionais para Segurança nas Rodovias — Publicação IPR 741 — existe uma maior possibilidade de ocorrência de acidentes em trechos de rampa, mas isso se tratando de segmentos longos de rodovias. No presente estudo, trata-se de um intervalo curto de alteração do greide da rodovia.

A título de ilustração, o manual de segurança do DNIT, apresenta os greides máximos estabelecidos em diversos países. Nota-se que o menor valor atribuído para 40 km/h é de 7% e o maior 12% (ambos superiores ao considerado atualmente no projeto).

n /	Velocidade diretriz (km/h)								
País	40	50	60	70	80	90	100	110	120
Austrália		•			•	•			
Plana	-	-	6 - 8	-	4 - 6	-	3 - 5	-	3 - 5
Ondulada	-	-	7-9	-	5 - 7	-	4 - 6	-	4-6
Montanhosa	-	-	9 - 10	-	7-9	-	6 - 8	-	-
Canadá	7	7	6 - 7	6	4 - 6	4 - 5	3 - 5	3	3
Rodovia Secundária	11	11	10 - 11	9	7 - 8	6 - 7	5 - 7	5 - 6	5
França	-	-	7	-	6	-	5	-	-
Alemanha	-	-	8	7	6	5	4.5	-	4
Grécia	-	11	10	9	8	7	5	4.5	4
Itália	10	10	7	7	6	5	5	5	5
Rodovia Secundária	12	-	10	-	7	6	6	-	-
Japão	7	6	5	-	4	-	3	-	2
África do Sul									
Plana	-	-	-	5	4	3.5	3	3	3
Ondulada	-	7	6	5.5	5	4.5	4	-	-
Montanhosa	10	9	8	7	6	-	-	-	-
Suíça	12	-	10	-	8	-	6	-	4
U.S.A									
Plana	-	-	5	5	4	4	3	3	3
Ondulada	-	-	6	6	5	5	4	4	4
Montanhosa	-	-	8	7	7	6	6	4	5

Fonte: Lamm et al. In Highway design and traffic safety engineering handbook - 1999.

5.3 ANÁLISE DE INCLINAÇÕES DE OAE EXISTENTES NA REGIÃO

Como efeito ilustrativo, foi realizada em campo uma medição de inclinação de uma rampa de uma OAE localizada na SP-428 com Av. Lídio Martins Corrêa a uma distância de 12 km do ponto de estudo. A figura seguinte mostra o local da medição.

Figura 12: Ponto de medição de inclinação

Neste ponto, foi verificada uma inclinação de 8,22% com um comprimento de rampa de 120m sem prejuízo as operações do tráfego de veículos de passeio e de carga.

5.4 CLASSE DE PROJETO E FUNCIONAL DA VIA

Por último, far-se-á uma análise, caso estivesse em análise um segmento de via urbana, apenas a título de informação. Com base nas pesquisas de campo, a contagem de veículos realizadas apontou para um VMD aproximado de 800 (considerando a média dos dois sentidos) veículos por sentido com uma velocidade operacional entre 30 km/h e 40 km/h.

Essas **características operacionais** da via, que é uma via vicinal, integra um Sistema Coletor Secundário ou Sistema Local.

Conforme pode ser visto na Tabela 6, o Manual do DNIT de Projeto Geométrico de Travessias Urbanas (IPR, Publi., 740), não apresenta rampas máximas admissíveis para a categoria funcional coletor ou local. No entanto, sabe-se que, um sistema coletor ou local apresenta diretrizes de projeto menos restritiva que vias arteriais e deste modo, pode-se inferir que valores de 8% de inclinação em terreno plano pode ser aplicado em vias coletoras ou locais sem prejuízos ao tráfego.

Contractor locato	Relevo	Velocidade diretriz (km/h)						
Categoria da via		50	60	70	80	90	100	110
	Plano				4	4	3	3
V ias expressas *	Ondulado				5	5	4	4
	Montanhoso				6	6	6	5
	Plano	8	7	6	6			
Vias arteriais	Ondulado	9	8	7	7			
	Montanhoso	11	10	9	9			

^{*}Greides 1% mais elevados podem ser adotados em terreno montanhoso ou em áreas urbanas com faixas de domínio muito restritas.

Fonte: Manual de projeto geométrico de travessias urbanas. - Rio de Janeiro, 2010. 392p. (IPR. Publ., 740);

5.5 ANÁLISE GERAL

Conforme exposto, diferentes análises apontam para rampas máximas a serem adotadas diferentes. A Tabela 7 apresenta o resumo das rampas máximas admissíveis pelos diferentes manuais avaliados.

Tabela 7: Resumo das metodologias apresentadas

Tipo de Análise	Rampa Máxima	Aplicação	Fonte
1 - Interseções em desnível	8%	Alças e Ramos de obras em desnível	Manual de projeto de interseções. 2.ed Rio de Janeiro, 2005. 528p. (IPR. Publ., 718)
2 - Segurança viária - Itália e Suiça	12%	Segmento de rodovia	Manual de projeto e práticas operacionais para segurança nas rodovias Rio de Janeiro, 2010. 280p. (IPR. Publ., 741)
3 - Inclinação de OAE existentes	8,22%	Segmento de obra em desnível	Medida em campo

No ponto de estudo analisado, o método correto de se analisar a rampa máxima a ser adotada deve ser feita conforme o item 1 da Tabela 7, em que o manual analisa o comportamento do tráfego em interseções e deste modo, tem-se então que a rampa máxima admissível é de 8%.

De encontro a esta análise, tem-se a medição feita em campo da inclinação da OAE na SP-428 que possui o valor de 8,22%.

6 CONCLUSÃO

Diante do estudo apresentado buscou-se mostrar que pelas características operacionais da via e embasamento técnico dos manuais de projeto do DNIT a execução de obras rodoviárias de transposição de níveis com rampas superiores a 6%.

De acordo com as diretrizes de projeto do DNIT em alças de Obras de Arte Especiais (OAE) mais importante que as inclinações das rampas é a distância de visibilidade adequada e este fator será plenamente garantido no projeto.

De acordo com o DNIT, quantos aos limites máximos de inclinação da rampa a ser adotado para uma velocidade operacional entre 30 km/h a 40 km/h pode-se utilizar 8% tanto na descida como na subida sem tornar a condução perigosa.

Realizando-se um paralelo com trevos diamante, com base na literatura do DNIT, rampas de greide pronunciados com comprimentos entre 120m a 360m possuem efeito moderado. Adotando-se na transposição da PN uma rampa de 8% o comprimento da mesma será de aproximadamente 113m. Sendo assim, pode-se inferir que esta extensão de rampa pode afetar pouco a operação da via já que este comprimento é inferior ao comprimento mínimo de 120m.

Destaca-se também, que na OAE da SP-428 a rampa de transposição tem inclinação de 8,22% sem prejuízos ao tráfego.

Como ilustração, no que diz respeito a segurança viária, outros países adotam em segmentos de rodovias, para velocidades de 40 km/h inclinações de 7% a 12% o que corrobora que a inclinação acima de 6% não afeta a segurança da rodovia.

Por fim, conclui-se a viabilidade que a obra de transposição da PN na Estrada Particular da CODESP pode ser executada com rampa superior a 6%, limitada ao máximo de 8% e assegurando-se as distâncias de visibilidade adequadas, sem prejuízos a segurança e operação viária.

7 BIBLIOGRAFIA

Brasil. Departamento Nacional de Infraestrutura de Transportes. Diretoria Executiva. Instituto de Pesquisas Rodoviárias. Manual de projeto e práticas operacionais para segurança nas rodovias. - Rio de Janeiro, 2010. 280p. (IPR. Publ., 741);

Brasil. Departamento Nacional de Estradas de Rodagem. Diretoria de Desenvolvimento Tecnológico. Divisão de Capacitação Tecnológica. Manual de projeto geométrico de rodovias rurais. – Rio de Janeiro, 1999. 195p. (IPR. Publi., 706);

Brasil. Departamento Nacional de Infra-Estrutura de Transportes. Diretoria de Planejamento e Pesquisa. Coordenação Geral de Estudos e Pesquisa. Instituto de Pesquisas Rodoviárias. Manual de projeto de interseções. 2.ed. - Rio de Janeiro, 2005. 528p. (IPR. Publ., 718);

Brasil. Departamento Nacional de Infraestrutura de Transportes. Diretoria Executiva. Instituto de Pesquisas Rodoviárias. Manual de projeto geométrico de travessias urbanas. - Rio de Janeiro, 2010. 392p. (IPR. Publ., 740);

O Manual de Medidas de Segurança Viária (Edição ampliada e revisada) 2.015 - Rune Elvik, Alena Høye, Truls Vaa, Michael Sørensen;

Projeto Geométrico de Rodovias (2ª Edição) 2.004 – Carlos R. T. Pimenta e Márcio P. Oliveira.

EQUIPE TÉCNICA

ImTraff Consultoria e Projetos de Engenharia Ltda.

Av. Cristiano Machado n° 640, Sala 1106, Bairro Sagrada Família, BH-MG

Tel/Fax: +55 31 2516 8001

www.imtraff.com.br

Equipe de Trabalho:

RT: Frederico Rodrigues – Engenheiro Civil, Doutor em Engenharia de Transportes, CREA 90.217/D – MG; Pedro Oliveira – Técnico em Transportes e Trânsito